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Abstract. The data on average hadron multiplicities in central A+A collisions measured at CERN SPS
are analysed with the ideal hadron gas model. It is shown that the full chemical equilibrium version of the
model fails to describe the experimental results. The agreement of the data with the off–equilibrium version
allowing for partial strangeness saturation is significantly better. The chemical freeze–out temperature of
about 180 MeV seems to be independent of the system size (from S+S to Pb+Pb) and in agreement with
that extracted in e+ + e−, p + p and p + p̄ collisions. The strangeness suppression is discussed at both
hadron and valence quark level. It is found that the hadronic strangeness saturation factor γS increases
from about 0.45 for p + p interactions to about 0.7 for central A+A collisions with no significant change
from S+S to Pb+Pb collisions indicating that the strangeness enhancement in heavy ion collisions cannot
be fully attributed to the increased system size. The quark strangeness suppression factor λS is found to be
about 0.2 for elementary collisions and about 0.4 for heavy ion collisions independently of collision energy
and type of colliding system.

1 Introduction

Many years of experimental effort in the field of high
energy nuclear collisions yielded a large amount of data
on particle production at different collision energies (up
to 200 A GeV/c) and for different colliding systems [1].
These results allow studying the properties of strongly in-
teracting matter at high energy densities. Ultimately, at
high enough collision energy one expects to create in the
laboratory the Quark–Gluon Plasma (QGP), a form of
matter in which effective degrees of freedom are quarks
and gluons instead of hadrons and hadronic resonances.
The formation of QGP with deconfinement of quarks and
gluons should hopefully be reflected in the final hadron
production, provided that the expected modifications of
the entropy and strangeness content of the system sur-
vive hadronization and reinteractions between final state
hadrons. In principle the system evolution is determined
by QCD. Nevertheless, the formation of hadrons is a pro-
cess entirely lying in its non–perturbative domain, hence,
in order to study the final state, one has to resort to phe-
nomenological models such as string or statistical (ther-
mal) models.

The statistical models, whose prototypes [2–4] date
back to ’50s and ’60s, are based on the assumption of lo-
cal filling of available phase space according to statistical
laws, once collective effects have been taken into account.
This ansatz allows the characterization of hadron produc-

tion by means of few parameters such as temperature,
volume and chemical potentials. Furthermore, parameters
accounting for possible departures from complete equilib-
rium are often introduced.

A long and rich history of thermal models is related
to their surprising success in the description of many as-
pects of high energy collisions [5]. It has been shown re-
cently that the ideal hadron gas model allowing for non–
equilibrium strangeness abundance is able to reproduce
hadron multiplicities in e+ + e−, p + p and p + p̄ inter-
actions over a large collision energy range [6–8]. In this
paper we apply the same model to analyse the data of
hadron multiplicities in central nucleus–nucleus collisions
at CERN SPS collision energies. The data on Sulphur–
nucleus collisions at 200 A GeV/c were already analysed
using thermal models in many previous works (for a review
see [9]). We add to this data set the preliminary results
on hadron production in central Pb+Pb collisions at 158
A GeV/c. The use of the same formulation of the ther-
mal model for the analysis of data from p + p to central
Pb+Pb collisions allows us to study the evolution of the
parameters of the model in the full range of the collid-
ing systems. Our analysis is based on hadron multiplici-
ties integrated over the full phase space because their use
minimizes the influence of collective effects on final results
allowing a formulation of the model to be tested with a
minimal number of assumptions and parameters.
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The paper is organized as follows: in Sect. 2 we de-
scribe the hadron gas model which is confronted with the
experimental data in Sect. 3. Discussion and conclusions
are given in Sect. 4.

2 Hadron gas model

In this section the hadron gas model used in the present
analysis is sketched; a more detailed description can be
found in [7,8]. The model postulates the formation of an
arbitrary number of hadron gas fireballs each having a
definite collective momentum as the result of an interac-
tion between the two colliding systems. The parameters
describing a hadron gas fireball at thermal and chemical
equilibrium are the temperature Ti, the volume Vi in its
rest frame, and the quantum numbers, i.e. electric charge
Qi, baryon number Bi and strangeness Si. Charm and
beauty have been excluded from the calculations as the
thermal production of heavy–flavoured hadrons is negli-
gible with respect to non–heavy-flavoured hadrons in the
expected range of temperatures, namely 100÷200 MeV. If
Q0

i = (Qi, Bi, Si) is the vector of ith fireball’s quantum
numbers and N is the number of fireballs, the following
constraint:

N∑
i=1

Q0
i = Q0 , (1)

where Q0 is the quantum vector fixed by the initial state,
must be fulfilled. The average yield of any hadron in the
ith fireball can be derived from the partition function:

Zi(Q0
i ) =

∑
states

e−Ei/TiδQi,Q0
i
, (2)

which is calculated in the canonical approach, i.e. by using
only the multi–hadronic states having the same quantum
numbers of the fireball.

A non–equilibrium parameter γSi accounting for a pos-
sibly incomplete strangeness chemical equilibration is in-
troduced by multiplying by γs

Si the Boltzmann factors
e−Ej/Ti associated to the jth hadron in the partition func-
tion, where s is the number of its valence strange quarks
and antiquarks. Although this factor was introduced heu-
ristically [10] and used as a purely phenomenological pa-
rameter in the analysis of elementary collisions [6–8], it
can be shown that γS formally is the fugacity associated to
the number of strange + antistrange quarks in the hadron
phase in a grand-canonical framework [11].

The overall average multiplicity of each hadron species
is the sum of all average yields in each fireball. In principle
any configuration {Q0

1, . . . ,Q
0
N} of fireballs in the event

may occur, so that average hadron abundances depend on
the probability w(Q0

1, . . . ,Q
0
N ) of occurrence of a given

configuration besides the whole set of fireball thermal pa-
rameters Ti, Vi and γSi. However, it can be shown that if
such configuration weights w(Q0

1, . . . ,Q
0
N ) are chosen in

a statistical fashion [7,8]:

w(Q0
1, . . . ,Q

0
N ) =

δΣiQ0
i
,Q0

∏N
i=1 Zi(Q0

i )∑
Q0

1,...,Q0
N
δΣiQ0

i
,Q0

∏N
i=1 Zi(Q0

i )
(3)

and the fireball freeze–out temperatures and γSi suppres-
sion factors are the same, namely Ti ≡ T and γSi ≡ γS,
then the average hadron abundances nj at freeze–out de-
pend only on the global volume V ≡ ∑N

i=1 Vi and Q0

through the following equation:

nj = (2Jj + 1)
V T

2π2

×
∞∑

l=1

(∓1)l+1 Z(Q0 − lqj)
Z(Q0)

γ
lsj

S

m2
j

l
K2(

lmj

T
) , (4)

where the upper sign is for fermions and the lower for
bosons; the function Z is the global partition function [7,
8] and qj is the quantum number vector of the jth hadron
species.

The special choice of weights w(Q0
1, . . . ,Q

0
N ) in [7,8]

leads to the same expression of average multiplicities rel-
evant to a system in global equilibrium even if the fire-
balls are not in mechanical equilibrium. It might be ar-
gued that the difference between the rapidity spectra of
baryons and antibaryons – existing even in central A+A
collisions [12] – question the validity of this choice. Nev-
ertheless this choice has a remarkable property, namely
it removes the dependence of hadron average multiplici-
ties on both the number of fireballs and their ordering ei-
ther in size or in space (reabsorbed in the global volume).
As a consequence, much freedom is left to possibly re-
produce the rapidity distributions within the model keep-
ing the same quantitative expressions for hadron abun-
dances (see Appendix A). However, even if the choice of
the weights w(Q0

1, . . . ,Q
0
N ) was not correct, the correc-

tions to (4) are expected to be small because the relative
abundances are predominantly determined by the inten-
sive thermal parameters and not by fireball quantum con-
figuration weighting.

The chemical factors Z(Q0 − lqj)/Z(Q0) in (4) im-
plement the dependence of the yields upon the chemistry
of the system and replace the chemical potentials in the
proper canonical formalism. For very large volumes, as
expected in heavy ion collisions, it can be proved [8] by
means of a saddle–point approximation, that (4) reduces
to:

nj = (2Jj + 1)
V T

2π2

∞∑
l=1

(∓1)l+1 γ
lsj

S

m2
j

l
K2(

lmj

T
)

×elQ0A−1qj/2 e−l2qjA−1qj/4 , (5)

where A is a 3×3 matrix whose elements are proportional
to V :

Ak,l =
1
2

∑
j

V (2Jj + 1)
(2π)3

×
∫

d3p
γ

sj

S e−
√

p2+m2
j
/T

(1 ± γ
sj

S e−
√

p2+m2
j
/T )2

qj,lqj,k , (6)

where the sum runs over all hadron species. In (5) the
chemical factors are transformed into a product of two fac-
tors: the first one can be written as exp[lµ · qj/T ] where
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µ is a traditional set of chemical potentials, whereas the
factor exp[−l2qjA−1qj/4] has no grand-canonical corre-
sponding quantity. Its presence entails a suppression of
hadrons having non–vanishing quantum numbers with re-
spect to neutral ones, owing to the finite size of the system.
Indeed this factor takes its origin from the requirement of
exact conservation of initial quantum numbers. In the infi-
nite volume limit A−1 goes to zero and the grand-canonical
formalism is fully recovered.

An important problem to face in modelling heavy ion
collisions is the fact that particle multiplicities are mea-
sured by averaging over events with a varying number
of participant nucleons. For central collisions of identi-
cal nuclei (S+S and Pb+Pb in this paper) the fluctua-
tions in the number of spectator nucleons, NSPEC, can be
considered to follow a Poisson distribution [13], well ap-
proximated by a Gaussian distribution if 〈NSPEC〉 � 1.
Hence fluctuations in the number of participant nucleons,
NPART = 2 · A − NSPEC, can be described by a Gaus-
sian distribution with mean value 〈NPART〉 and variance
〈NSPEC〉. For the considered collisions (S+S and Pb+Pb1)
it is 〈NSPEC〉 � 〈NPART〉, implying that the mean of par-
ticipant nucleons distribution is large in comparison with
its width. Assuming that T and γS do not depend on the
number of participant nucleons, the average number of
directly produced hadrons of species j is:

〈nj〉 = (2Jj + 1)
∑
Q0

∫
dV F (Q0, V )

V T

2π2

×
∞∑

l=1

(∓1)l+1γ
lsj

S

m2
j

l
K2

(
lmj

T

)

×elµ ·qj/T e−l2qjA−1qj/4 (7)

where F (Q0, V ) is the joint probability of observing an
event with global volume V and quantum vector Q0 (de-
termined by the number of protons and neutrons involved
in the collision). The removal of the integral from (6) by in-
troducing mean chemical potentials µ and mean volume
V must be undertaken with great care since such mean
values in general would depend on the hadron species and
would not be the same for all of them. This is clearly un-
derstood because µand A, depending on Q0 and V , multi-
ply qj in a non–factorisable form. However, if a reasonable
ansatz of a narrow Gaussian shape for the distribution
function F (Q0, V ) is assumed, according to previous dis-
cussion, it can be shown (see Appendix B) that the simple
averaging procedure introducing mean chemical potentials
and volume can be used provided that A−1 � 1. In other
words, for the following simple averaging formula to hold:

〈nj〉 ≈ (2Jj + 1)
V T

2π2

∞∑
l=1

(∓1)l+1 γ
lsj

S

m2
j

l
K2

(
lmj

T

)

×elµ ·qj/T e−l2qjA
−1

qj/4 , (8)

1 Validity of the above consideration for central S+Ag col-
lisions is questionable as fluctuations are probably dominated
by a geometrical effect.

a nearly grand-canonical regime and reasonably small fluc-
tuations of V and Q0 are needed. How small such fluctua-
tions must be, will be checked a posteriori in the actually
examined collisions. The hadron average multiplicities are
calculated with (8) in which V , T , γS and µB are free pa-
rameters to be fitted to the data, while µS and µQ, the
strangeness and the electrical chemical potentials respec-
tively, have been determined by means of two additional
constraints: the strangeness neutrality and the conserva-
tion of the ratio (Z1 + Z2)/(A1 + A2) formed with the
atomic and mass numbers of the two colliding nuclei:

∑
j

Sj〈nj〉 = 0

∑
j

Qj〈nj〉 =
Z1 + Z2

A1 +A2

∑
j

Bj〈nj〉 . (9)

It should be noted that the first of the two constraints in
(9) is valid on an event by event basis whereas the second,
only averaged over a large number of collisions.

All previous equations are concerned with primary had-
rons, namely particles and resonances directly emitted
from the hadronic source and not coming from secondary
decays. On the other hand, since actual measurements in-
clude feeding from heavier hadrons and resonances, the
hadron production rates to be compared with the data
have been calculated by letting all primary hadrons de-
cay according to known branching ratios until particles
considered stable by the experiments are reached. Among
primary hadrons we included all particles and resonances
up to a mass of 1.7 GeV; the masses of resonances have
been distributed according to a relativistic Breit–Wigner.
The needed values of hadron masses, widths and branch-
ing ratios have been taken from the most recent Particle
Data Book [14].

3 Comparison with the data

3.1 Full equilibrium model

The hadron gas model described in the previous section
has been used to fit the data on hadron abundances in
central S+S, S+Ag at 200 A GeV/c and central Pb+Pb
collisions at 158 A GeV/c measured by NA35 and NA49
Collaborations at CERN SPS. We used average hadron
multiplicities measured in (or extrapolated to) full phase
space. The compiled data and the references to the orig-
inal papers, where the experimental details (acceptances,
extrapolation procedures) can be found, are given in Ta-
ble 1. Since preliminary data on central Pb+Pb collisions
are still poor, we decided in this case to use in addition
two particle ratios measured in the central rapidity region,
namely K+/K− and Λ/Λ. The measured rapidity distri-
butions of these particles in the acceptance region are sim-
ilar to those of the corresponding antiparticles [21], thus
justifying our decision to use those ratios as estimates of
the full phase space ones. The analysis of particle multi-
plicities in e+ + e−, p + p and p + p̄ collisions within a
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Fig. 1. Particle ratios in the grand-canonical approximation for γS = 1. The bands correspond to ±1σ deviations of
the experimental ratios summarized in Table 1. The symbol K stands for 〈K〉 = 〈K+〉 + 〈K−〉 + 2〈K0

s〉

hadron gas model indicates that the strangeness produc-
tion in such elementary collisions is not high enough to
ensure the complete local chemical equilibrium at hadron
level. It may be expected that in the case of central A+A
collisions, due to a much larger volume of the interaction
region and an increased role of hadron rescattering, a full
local chemical equilibration at hadronic level can be at-
tained.

In order to test this hypothesis we started the compar-
ison of the experimental data with the hadron gas model
by using first its fully equilibrated version, i.e. by setting
γS = 1. We performed a graphical test similar to that
made in [22] by plotting in the T -µB/T plane the bands
determined by the central values of some of the most rele-
vant ratios of hadron yields and by their 1σ variations. As
the overall multiplicities are very large, we set A−1 = 0
in (8); in this grand-canonical limit the multiplicity ra-
tios depend only on the intensive free parameters T and
µB/T as the mean volume V cancels out. This approxi-
mation turns out to be satisfactory for all the examined
collisions as it is demonstrated below. In Fig. 1 a–c such
bands are shown for S+S, S+Ag and Pb+Pb data, respec-
tively. There is no evident common crossing region for all
bands, indicating absence of complete equilibrium even in
central collisions of nuclei as heavy as Lead. It should be
noted that a crossing region does exist for Pb+Pb colli-
sions with T ' 120 MeV and µB/T ' 2.7, as long as only
full phase space multiplicities are considered, i.e. excluding
the Λ/Λ band. However, these latter values imply an an-
tibaryon/baryon ratio of less than 10−2 at primary level,
which is unrealistically small with respect to the same ra-
tio in S+S and S+Ag collisions. In fact the measured Λ̄/Λ
band is quite far from the crossing point.

In order to confirm the previous finding we performed
a least–squared fit to the data with T , V and µB/T as
free parameters, using the canonical corrections and keep-
ing γS = 1 fixed. The details of the fitting procedure are
described in Appendix C. The results are shown in the
first part of Table 2 and the fourth column of Table 1.
The χ2/NDF ’s are about 6÷8 with large discrepancies
between fitted and measured values. Therefore we con-

clude that a full equilibrium version of the ideal hadron
gas model fails to reproduce full phase space hadron multi-
plicities in central A+A collisions at CERN SPS energies.

Our conclusion is in contradiction with the findings in
[23]. This discrepancy can be explained by the fact that
the analysis in [23] was performed by using particle ratios
in various regions of rapidity and transverse momentum
which, unlike in our analysis, requires additional dynam-
ical input beyond a simple statistical ansatz. Secondly, a
proper statistical comparison between model predictions
and data has not been performed in [23].

3.2 Off–equilibrium model

We tested the off–equilibrium version of the ideal hadron
gas model repeating the fits with γS as a free parame-
ter. The results of these new fits are shown in Table 1
and in the lower half of Table 2 while the comparison
between fitted and measured multiplicities (or ratios) is
shown in Table 1. There is a good agreement for all parti-
cles with some exceptions such as antiprotons in both S+S
and S+Ag collisions. The χ2/NDF for S+S and S+Ag
collisions is about 3.5, thus significantly lower than for
the full–equilibrium fit. The χ2/NDF for central Pb+Pb
collisions is close to 1.

The obtained temperatures and baryon chemical po-
tentials are quite compatible with a common value and so
are the γS values which turn out to be definitely less than
1 in all the three examined collisions. Also quoted in Ta-
ble 2 are the obtained chemical potentials µS and µQ and
the range of variation of the matrix A−1 elements; their
smallness bears out the saddle–point approximation used
in this analysis and the previously described graphical
test by confirming the proximity to the grand-canonical
regime.

3.3 Discussion of the analysis

The dependence of the fitted parameters on the hadron
mass spectrum cut–off has been checked by repeating the
fit with lower cut–off values and found to be negligible.
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Table 1. Comparison between fitted and measured hadron
abundances and ratios. All quoted multiplicities do not include
feeding from weak decays unless otherwise stated. Note: the
χ2’s calculated by using values quoted below differ from those
of Table 2 as the latter include contribution from uncertainties
on input hadron parameters

Fitted
Hadron Measured Fitted with γS=1 Reference

S+S collisions

h− (a) 98±3 92.63 82.04 [15]
K+ 12.5±0.4 12.68 13.75 [16]
K− 6.9±0.4 7.611 7.785 [16]
K0

s 10.5±1.7 9.939 10.49 [12]
Λ (b) 9.4±1.0 7.692 10.13 [12]
Λ̄ (b) 2.2±0.4 1.474 2.825 [12]
p-p̄ (c) 21.2±1.3 21.49 19.79 [15]
p̄ (d) 1.15±0.4 2.092 2.314 [17]

S+Ag collisions

h− (a) 186±11 171.3 147.2 [15]
K0

s 15.5±1.5 17.43 19.44 [12]
Λ (b) 15.2±1.2 13.99 17.44 [12]
Λ̄ (b) 2.6±0.3 2.223 2.612 [12]
p-p̄ (c) 43±3 43.44 39.18 [15]
p̄ (d) 2.0±0.8 3.381 2.401 [17]

Pb+Pb collisions

Net baryon 372±10 375.7 372.6 [18]
h− (a) 680±50 650.2 638.5 [19]
K0

s 68±10 58.27 73.44 [19]
φ 5.4±0.7 5.759 5.648 [20]
p-p̄ (c) 155±20 155.3 147.8 [19]
K+/K− 1.8±0.1 1.652 1.700 [21]
Λ̄/Λ 0.2±0.04 0.188 0.016 [21]

a Defined as π− + K− + p̄
b Includes feeding from Ξ
c Measured with the ’+ - –’ method, in this case limited
rapidity acceptance (0.2-5.8) to exclude spectators
d Measured in a restricted rapidity interval and extrapolated
by assuming that p̄ has the same rapidity distribution as the Λ̄

The validity of the approximated averaged formula
in (8) in the presence of participant fluctuations has been
checked by calculating its first order corrections according
to the formulae quoted in Appendix B with the assump-
tion of moderate Gaussian fluctuations of baryon number
B, electric charge Q and volume V . The corrections have
been estimated repeatedly by random variations of the
correlations, assumed to be positive, between B, Q and
V in order to find out a maximum value. Particles un-
dergoing the most significant variations with respect to
the average yield are baryons whose production increases
mainly owing to terms proportional to (δV/V ) where δV
is the volume dispersion. Such variations turn out to be
almost constant for the three kinds of collisions as a func-
tion of the relative dispersions of B, Q and V . They are

within 5% with no volume fluctuation even for δB/B and
δQ/Q of 30% but can raise to more than 30% if also a
volume dispersion δV/V = 30% is included.

As follows from the previous discussion (see Sect. 2)
and the data presented in Table 1, the relative width
of baryon number distribution is expected to be around
6% and 2% for central S+S and Pb+Pb collisions, re-
spectively. For these participant fluctuations the correc-
tions to baryon yields range from about 2.5% (1%) for
δV/V = 10% up to 17% (13%) for δV/V = 30% in S+S
(Pb+Pb) collisions. It is worth remarking that the B, Q
and V fluctuations would mainly influence the determi-
nation of the baryochemical potential in the fit as an-
tibaryons and other particles production are much less
affected by them compared with baryons.

Whilst S+S and Pb+Pb collisions involve two identical
nuclei, S+Ag is an asymmetric nuclear collision and the
use of the (9) to determine strange and electrical chemical
potentials may be not appropriate. According to (9) the
average ratio Q/B of participant nucleons in S+Ag colli-
sions is about 0.45 whereas it is actually likely to be some-
what higher owing to the fact that Sulphur (Z/A=0.5) is
the smaller nucleus. In order to prove that our results are
independent of the previous assumption, we repeated the
fit by varying the charge/baryon number ratio and taking
the extreme case Q/B=0.5. We found T = 177.5 ± 7.9
MeV, V T 3 exp(−0.7GeV/T ) = 6.37 ± 0.47, γS = 0.707 ±
0.063, µB/T = 1.325 ± 0.081 with a χ2/NDF = 7.0/2,
a fit result not significantly different from that quoted in
Table 2.

A further technical problem in the χ2 fit is concerned
with data redundancy. Whenever two or more data points
are in a relationship that is not dependent on any free
parameter, then the χ2 significance might be question-
able as the effective number of degrees of freedom is over-
estimated. This is the case for S+S collisions where the
(approximate) relation 〈K0

s〉 = (〈K+〉 + 〈K−〉)/2, owing
to isospin symmetry and independent of model parame-
ters, links three data points. However, it can be shown
(see Appendix D), that such redundancy does not affect
the extraction of thermal parameters nor their errors; its
main effect is a lowering of the χ2/NDF .

Our analysis is done in the ideal pointlike hadron gas
framework. Since the extracted temperatures are very high,
corrections due to particle repulsion in principle should be
considered. However, most corrections proposed in liter-
ature leave particle ratios unchanged [9] so that the pa-
rameters T , γS and chemical potentials are unaffected. On
the other hand, our volume parameter V is the pointlike
particle volume and should not be confused with the ac-
tual volume. In a recent analysis [24] different particle ra-
tios were compared with the full–equilibrium hadron gas
predictions by introducing different hard–core radii for pi-
ons and other hadrons leading to an effective pion chemi-
cal potential. Such a procedure restores the agreement of
the pion abundance which is always underestimated using
thermal parameters extracted from the remaining hadrons
[25] in a full–equilibrium model. However, the price to be
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payed is the introduction of additional, particle-species
dependent, parameters.

Our numerical results are quite different from a pre-
vious analysis of S+S collisions [25] which found T =
205 ± 39 MeV, γS = 0.95 ± 0.20 and µB/T = 1.30 ± 0.17
by excluding negatively charged hadrons from the anal-
ysed data set. The fact that χ2/NDF > 3 in S+S colli-
sions is expected to produce fluctuations larger than 1σ
in the fitted parameters if some data points are excluded
in turn from the fit. In fact, by excluding negatives we
found T = 200 ± 10 MeV, γS = 0.99 ± 0.11 and µB/T =
1.35 ± 0.09, quite in agreement with [25]. The remaining
difference can be explained by the use of an updated data
sample and particularly by the inclusion, in our analy-
sis, of resonance widths; this especially enhances the ρ
meson production and, consequently, the pion production
improving the agreement with the measured negatively
charged hadron multiplicity.

Another recent analysis [26] of hadron abundances in
Pb+Pb collisions found γS = 0.9 ± 0.09 but with the use
of only strange baryons ratios in a limited phase space
region and omitting the φ multiplicity.

4 Discussion and conclusions

The data on hadron multiplicities in central A+A colli-
sions at SPS energies can not be reproduced by an ideal
hadron gas assuming complete chemical equilibrium. This
statement is also true for the central collisions of the heav-
iest nuclei, Pb+Pb. The hadron gas model supplemented
with partial strangeness saturation agrees significantly bet-
ter with the data as the χ2/NDF reduces from about 7
to about 3 for S+S and S+Ag collisions and about 1 for
Pb+Pb collisions.

The behaviour of the intensive parameters obtained
within the off–equilibrium model is shown as a function

of the system size in Fig. 2 where the result for the p + p
data at similar collision energy [8] is also included.

The lack of complete strangeness equilibrium at hadron
level for central A+A collisions can not be interpreted
as an effect of the choice of weights w(Q0

1, . . . ,Q
0
N ) de-

scribed in Sect. 2 which is crucial to reduce the number of
free parameters. Since γS turns out to be < 1, it might
be argued indeed that if the hadron gas fireballs were
small enough and all with zero strangeness (so that the
weights w(Q0

1, . . . ,Q
0
N ) would be no longer those chosen

in Sect. 2), a suitable canonical suppression [6,8] could be
generated without the need of γS and a hadron gas in
full chemical equilibrium would be recovered. Nevertheless
this mechanism would have no effect on the yield of φ me-
son which is completely neutral, thus not suppressed by
quantum number conservation at hadron level and hav-
ing no known feeding from heavier light–flavoured reso-
nances. Therefore, the measurement of φ production in
Pb+Pb collisions establishes the necessity of a significant
strangeness suppression at hadronic level independently
of the validity of the assumed fireball quantum configura-
tions occurrence probabilities.

An important conclusion can be drawn from the re-
sulting chemical freeze–out temperature, which seems to
be independent of the system size and it is, within errors,
much the same as that in e+ + e−, p + p and p + p̄ col-
lisions [7,8,27]. This seems to indicate that the chemical
freeze–out occurs close to the hadronization point and that
the same mechanism of statistical hadronic phase space
filling at critical parameters of the prehadronic matter in-
voked as a natural explanation of elementary collisions re-
sults [8,27] also holds for heavy ion collisions. Moreover,
the similar µB/T values for all studied A+A collisions
suggest a common hadronization nuclear density.

As the fit is not perfect in S+S and S+Ag collisions
even in the off–equilibrium model, one may speculate that
the small deviations from model predictions are due to
secondary inelastic interactions between hadrons follow-
ing the hadronization stage. While thought to be absent
in p + p collisions, they may likely occur in A+A col-
lisions where they can destroy the statistical character
of the hadronization process. In fact, as inelastic cross
sections for different processes are significantly different,
hadron rescatterings may lead to decoupling of different
particle species at different temperatures, thus affecting
the single temperature fit. This mechanism is particularly
well–suited to explain the observed deviation of antipro-
tons which may quickly annihilate in the baryon–dense
medium formed in an A+A collision. On the other hand
it should be mentioned that the observed small devia-
tions from the off–equilibrium version of the hadron gas
model could simply stem from errors in the extrapola-
tion procedures, from participant and volume fluctuations
(as described in Sect. 3) and from the choice of weights
w(Q0

1, . . . ,Q
0
N ) (see Sect. 2).

Whilst the temperature is constant, the strangeness
suppression factor increases from about 0.45 for p + p in-
teractions to about 0.7 for central S+S collisions at compa-
rable nucleon–nucleon centre of mass energies. No further
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Table 2. Hadron gas model fitted parameters. The first set of parameters has been obtained
with a three–parameter fit by setting γS = 1. The second set is the four–parameter fit result
when only experimental errors are used (first step of the fitting procedure) while the last
set is the final result including uncertainties on masses, widths and branching ratios. Also
quoted are the obtained chemical potentials, the matrix A−1 elements and the χ2. The χ2 for
S+S collisions within brackets is its corrected estimate accounting for kaons data redundancy
(see text)

Parameter S+S S+Ag Pb+Pb

T (MeV) 208.3±10.4 179.9±7.8 125.4±4.6
V T 3 exp[−0.7GeV/T ] 2.782±0.091 4.91±0.30 13.1±1.1
γS (fixed) 1 1 1
µB/T 1.145±0.066 1.470±0.080 2.404±0.14
χ2/dof 34.0/5 22.3/3 22.5/4

T0 (MeV) 182.4±9.2 181.8±6.9 192.6±8.1
V 0T

3
0 exp[−0.7GeV/T0] 3.51±0.15 6.20±0.45 24.3±1.6

γS0 0.732±0.038 0.727±0.057 0.616±0.043
µB0/T0 1.248±0.074 1.365±0.072 1.207±0.071
χ2

0/dof 17.1/4 7.74/2 3.99/3

T (MeV) 180.5±10.9 178.9±8.1 192.6±19.3
V T 3 exp[−0.7GeV/T ] 3.48±0.16 6.29 ±0.47 24.3±2.2
γS 0.747±0.048 0.711±0.063 0.620±0.049
µB/T 1.22±0.10 1.350±0.081 1.21±0.12
χ2/dof 12.4/4 (11.9/3) 6.44/2 3.16/3
µS/T -0.320 -0.363 -0.372
µQ/T -0.00217 -0.0316 -0.0655
A−1 (−2.00 ÷ 6.25)10−2 (−1.10 ÷ 3.54)10−2 (−0.30 ÷ 0.87)10−2

increase of the strangeness suppression factor is observed
for central Pb+Pb collisions. This observation has two im-
portant consequences: firstly, a heavy ion collision is not
the result of an incoherent sum of nucleon collisions as
far as strangeness production is concerned. In fact, due to
isospin symmetry, γS must be the same in p + p and n + n
collisions at the same

√
s; strangeness production in p + n

interactions was measured to be the same as in p + p in-
teractions [28], thus the neutron content of colliding nuclei
cannot account for the increase of γS with respect to p + p
and p + p̄ collisions. Secondly, as canonical strangeness
suppression was taken into account in extracting γS in [8]
and in the present analysis, the strangeness enhancement
in heavy ion collisions cannot be fully attributed to the
increased system size at hadron level.

The relative production of strangeness has been in-
tensively studied in elementary [29] and nuclear collisions
[30,31]. It is usually expressed in terms of a strangeness
suppression factor λS defined as:

λS =
〈ss̄〉

0.5(〈uū〉 + 〈dd̄〉) , (10)

where 〈ss̄〉, 〈uū〉 and 〈dd̄〉 are the mean multiplicities of
newly produced valence quark–antiquark pairs at primary
hadron level, before resonance decays. Thus the initial col-
liding valence quarks are excluded in calculating λS. A ma-
jor problem in the experimental determination of λS is to
account for unmeasured hadron abundances. The statisti-
cal model used in this analysis is a useful tool for this pur-

pose because it reproduces well all measured hadron abun-
dances both in elementary and nuclear collisions, thus
providing a reliable quark counting method. In Fig. 3 λS
obtained by using model predictions for primary hadron
multiplicities in e+ + e−, p + p , p + p̄ collisions with the
parameters quoted in [27] and for A+A collisions is shown.
It should be mentioned that in e+ + e−collisions the lead-
ing strange quarks in e+e− → ss̄ events have been sub-
tracted from the numerator of (10) so that λS contains
only valence quarks created during the hadronization pro-
cess. The λS values for elementary collisions are consis-
tent with a constant value of about 0.2, even for very
high energy p + p̄ collisions. The difference between γS
in e+ + e−(' 0.7) compared to p + p , p + p̄ collisions
(0.46 ÷ 0.56) as resulting from the off–equilibrium hadron
gas model fit [7,8] is mainly due to two effects. As far as
p + p collisions are concerned, the presence of six initial
u, d quarks to be hadronized along with those newly pro-
duced brings about a γS decrease. In fact, for constant T ,
V and γS, a hadron gas with increasing baryon number
and electric charge, i.e. increasing number of initial pro-
tons, has an increasing λS (see Fig. 4). The physical reason
is the lower energy threshold for strange pair production
in a baryon rich environment where the dominant process
is via N + π → Λ+ K while in the baryon free case it pro-
ceeds via kaon pair production. Secondly, T and γS are
anticorrelated in e+ + e−collisions. As the central fitted
T value is lower in e+ + e−collisions in comparison with
p + p and p + p̄ collisions [27], the central γS value is ex-
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Fig. 3. The strangeness suppression factor λS = 2〈ss̄〉/(〈uū〉+
〈dd̄〉) in high energy collisions as a function of centre of mass
energy (nucleon–nucleon centre of mass energy for heavy ion
collisions) calculated within the off–equilibrium hadron gas
model. For e+ + e−, p + p and p + p̄ collisions the ratios have
been calculated by using model parameters quoted in [27]. For
p + p̄ in order to estimate the possible influence of the annihila-
tion process, we plotted in addition the λS value calculated by
including initial valence quarks and antiquarks (lower points).
For e+ + e−collisions the leading s quarks in e+e− → ss̄ have
been subtracted to calculate λS
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Fig. 4. The strangeness suppression factor λS = 2〈ss̄〉/(〈uū〉+
〈dd̄〉) in a hadron gas at fixed T , V and γS as a function of
the number of initial protons (baryon number equal to electric
charge)

pected to be higher in e+ + e−collisions to reproduce the
measured strange hadron multiplicities. In fact, by repeat-
ing the same fit as in [7] for e+ + e−collisions at

√
s = 29

and 91.2 GeV, and keeping fixed T = 170 MeV instead of
160.3 MeV and 163.4 MeV respectively, γS turns out to be
0.69 and 0.62 instead of 0.72 and 0.67 respectively with a
slightly worse χ2. Our extracted value λS is in agreement
with a previous estimate based on quark counting method
quoted in [32] only for energies

√
s < 100 GeV. On the

other hand, the rise of λS in p + p̄ collisions claimed in [32,
33] is not observed. The reason of this discrepancy is the
fact that λS was estimated in [33] by using only K/π ratio
as experimental input and two parametrizations of hadron
multiplicities [34,35] which, unlike our parametrization [7,
8], do not satisfactorily reproduce all available measured
multiplicities in p + p̄ collisions 2.

To summarize, the common characteristics of elemen-
tary interactions seems to be the independence of λS on
the collision energy, in the range examined in [7,8] and
type of colliding particles. This universal behaviour is bro-
ken in central A+A collisions. The value of λS turns out
to be about a factor two larger than the corresponding
value for elementary interactions. Our value for A+A colli-
sions is consistent with previous estimates based on quark
counting method [30]. Note that in [30] λS was also esti-
mated for p+A collisions and found to be consistent with
that of p + p collisions and independent of the size of
the target nucleus. This leads to the conclusion that no
strangeness enhancement is observed in p+A collisions.

The saturation of γS and λS factors as a function of
the colliding system size for central A+A collisions sug-
gests that the strangeness enhancement with respect to el-
ementary collisions may already occur in the prehadronic
phase and that secondary hadron scatterings, expected to
be much more abundant in Pb+Pb collisions, are of minor
importance for strangeness production. The strangeness
enhancement effect observed in central A+A collisions and
its independence of the colliding system size has been in-
terpreted as due to Quark–Gluon Plasma formation in the
early stage of the collision [31,36] already in S+S collisions
and not only in central Pb+Pb collisions according to the
interpretation of J/ψ suppression [37,38].
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Appendix A: Rapidity distributions
and statistical weights

In order to show that forward–backward peaked rapid-
ity distributions for baryons and centrally peaked for an-
tibaryons are not inconsistent with the assumption of sta-
tistical weights of (3) we consider a simple example of
p + p collisions. Since the derived expression of average
multiplicities in (4,5) does not depend either on the num-
ber of fireballs or their particular volumes V1, . . . , VN , we
consider a toy model with three fireballs with equal volume
Vf and sorted by boost velocities β1 > β2 > β3. According
to the statistical choice of weights w(Q0

1, . . . ,Q
0
N ), owing

to the equality of all parameters Vi, Ti and γSi of the

2 For instance, for p + p̄ collisions at
√

s = 546 GeV, the
parametrization in [34] predicts a Λ/K0

s ratio of 0.49, taking
the λS = 0.28 value quoted in [33], whereas the experimental
value is 0.24±0.05
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fireballs, the probability of occurrence of baryon number
configurations {1, 0, 1}, {0, 1, 1} and {1, 1, 0} is equal; the
same holds for more complex and less probable sets of con-
figurations such as {2, 0, 0}, {0, 0, 2} and {0, 2, 0}. There-
fore, as far as average hadron multiplicities are concerned,
nothing changes if one replaces {0, 1, 1} and {1, 1, 0} with
{1, 0, 1} and {0, 2, 0} with {2, 0, 0} in a half event sam-
ple and with {0, 0, 2} in the remaining half. The hadron
abundances do not vary and a strongly forward–backward
peaked rapidity distribution for baryons can be obtained
as the fireballs having a non–vanishing baryon number,
are always those in the forward or backward directions.

In general this argument can be repeated for N fire-
balls having an equal rest frame volume and an arbitrary
set of ordered boost velocities β1 > . . . > βN . In this case
the weights in (3) are symmetric:

w(Q0
σ(1), . . . ,Q

0
σ(N)) = w(Q0

1, . . . ,Q
0
N ) (11)

for any permutation σ of the integers 1, . . . , N . Therefore,
if p(Q0

1, . . . ,Q
0
N ) are the actual weights, for (5) to be valid,

the condition to be fulfilled is:

w[Q0
1, . . . ,Q

0
N ] =

1
N !

∑
σ

p(Q0
σ(1), . . . ,Q

0
σ(N)) , (12)

where the square brackets mean that the set [Q0
1, . . . ,Q

0
N ]

is a not–ordered one. This condition is weaker than a strict
equality between w(Q0

1, . . . ,Q
0
N ) and p(Q0

1, . . . ,Q
0
N ).

To summarize, the compatibility between the expres-
sion for hadron multiplicities ((4,5)) and rapidity distri-
butions can be achieved by choosing a model in which all
fireballs have the same volume. Their boost velocities and
their total number are allowed to vary event by event and
can be determined by using actual hadron spectra.

Appendix B: Participant nucleons
and volume fluctuations

In this section we point out the conditions to be fulfilled
for the replacement of (7) with its averaged version (8)
in the presence of fluctuations of participant nucleons. In
general, the variation of the number of participants imply
fluctuations of total baryon number B, electric charge Q
and also global volume V of the colliding system. We as-
sume that the associated distribution function F (Q,B, V )
is a Gaussian one and that the mean values Q and B are
large, which is the case in the examined collisions. If the
latter condition is met, the sum over quantum vectors Q0

in (7) can be turned into an integration:

〈nj〉 = (2Jj + 1)
T

2π2

∞∑
l=1

(∓1)l+1γ
lsj

S

m2
j

l
K2

(
lmj

T

)

×
∫

dQdBdV F (Q,B, V ) V (13)

×elµ ·qj/T e−l2qjA−1qj/4 .

No more factor can be drawn out of the integral as the
chemical potentials µdepend on the integration variables

because of the quantum number conservation constraint∑
j qj〈nj〉 = Q0 and the matrix A is proportional to the

volume (see (6)). Nevertheless, they can be expanded off
the mean values Q, B and V up to first order, provided
that the dispersions are not too large:

µ ' µ (X) + Jµ (X − X) (14)

A−1 ' A−1 +
∂A−1

∂V
(V − V ) = A−1

(
1 − V − V

V

)
.

where X = (Q,B, V ) and J is the Jacobian matrix. Using
the above expansions in (14) one obtains:

〈nj〉 =
∞∑

l=1

〈nj〉l

∫
dQdBdV

(
1 +

V − V

V

)
F (Q,B, V )

× exp
[
lqj · Jµ (X − X)/T + l2qjA−1 (V − V )

V
qj/4

]
(15)

where 〈nj〉l is just the lth term of the series in (8). The
second term in the exponential is negligible if we are close
to the grand-canonical regime and if the temperature is
low enough to quickly suppress the terms of the series
with high l: this condition is met for all hadrons if T < 200
MeV. Therefore:

〈nj〉 '
∞∑

l=1

〈nj〉l

∫
dQdBdV

(
1 +

V − V

V

)

×F (Q,B, V ) exp[lqj · Jµ (X − X)/T ] . (16)

If F is a multivariate Gaussian:

F (X) =
1√

(2π)3 det C
exp[−(X − X) · C−1(X − X)/2] ,

(17)
then the integral in (16) can be solved analytically if the
integration is extended to infinity. This is a satisfactory
approximation if the dispersions are small compared to
the mean values, which is one of the basic requirements
mentioned above.

〈nj〉 '
∞∑

l=1

〈nj〉l

[
1 +

l

TV
(CJT

µ qj)3

]

× exp
[
l2qj · Jµ CJT

µ qj/(2T 2)
]
. (18)

Thus, for the approximation (8) to be valid, it is necessary
that CJT

µ /(TV ) � 1 and Jµ CJT
µ /T

2 � 1. The Jacobian
matrix Jµ can be calculated by taking the derivative of
the quantum numbers conservation constraint:

∂

∂Q0
i

∑
j

qjnj =
∑

j

qj

∞∑
l=1

njl
l

T

∑
k

qk
j

∂µk

∂Q0
i

= ei , (19)

where ei is the ith unitary vector. If we define the matrix
B:

Bk
i =

∑
j

∞∑
l=1

l njlq
k
j q

i
j , (20)
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then the righthand equality in (19) can be inverted so to
obtain the derivatives of the chemical potentials:

∂µk

∂Q0
i

= T
(
B−1)k

i
. (21)

It should be noted that the matrix B would be equal to
2A if µ/T = 0. Since µ/T is generally O(1) it turns
out that B−1 = O(A−1), hence it is expected to be much
smaller than 1. To complete the Jacobian matrix Jµ , we
take the derivative of the quantum numbers conservation
constraint with respect to V for V = V , yielding:

B
T

∂µ

∂V
+

Q0

V
− 1

4V

∑
j

∞∑
l=1

l2qjA−1qjnjl = 0 . (22)

We use the Boltzmann limit for all hadrons in the last
term, namely we keep only the first term of the series. By
using this approximation, which is satisfactory if T ' 170
MeV, we conclude that the last term is ' (1/4)B−1Q0/V
which is much less than Q0/V . Therefore:

∂µ

∂V
' −TB−1 Q0

V
. (23)

Finally, the Jacobian matrix Jµ turns out to be:

Jµ ' T (O(A−1),O(A−1),O(A−1Q0/V )) , (24)

where each term is meant to be a column vector. This
result can be used in conjunction with the (18) to estab-
lish the validity of the approximation (8). If A−1 � 1
moderate fluctuations of B, Q, V in comparison with the
mean values are needed in order that CJT

µ /TV � 1 and
Jµ CJT

µ /T
2 � 1.

Appendix C: Fitting procedure

We adopted a two–step fit procedure to also take into
account the uncertainties on input parameters such as
hadron masses, widths and branching ratios, which in prin-
ciple can play a significant role in the test of the model.
Firstly a χ2 with only experimental errors has been mini-
mized and preliminary best–fit model parameters T0, V 0,
µB0 have been determined:

χ2 =
∑M

i=1(y
exp
i − ytheo

i )2

σ2
i

, (25)

where the index i runs over the M data points. Keep-
ing the preliminary model parameters fixed, the variations
∆yltheo

i of the multiplicities (or ratios) corresponding to
the variations of the lth input parameter by one standard
deviation have been calculated. Such variations have been
considered as additional systematic uncertainties on the
multiplicities and the following covariance matrix has been
formed:

Csys
ij =

∑
l

∆yl
i∆y

l
j (26)

to be added to the experimental covariance matrix Cexp.
Finally a new χ2 has been minimized:

χ2 =
M∑

i,j=1

(yexp
i − ytheo

i )[(Cexp + Csys)−1]ij(y
exp
j − ytheo

j )

(27)
from which the best–fit estimates of the model parame-
ters and their errors have been obtained. Actually more
than 130 among the most significant or worst known input
parameters have been considered and the corresponding
1σ variations performed. This fit technique upgrades the
one used by one of the authors in the analysis of thermal
hadron production in e+ + e−, p + p and p + p̄ collisions
[6–8] in that the off–diagonal elements of Csys are also
included.

Appendix D: χ2 and data redundancy

We prove that the parameters fitted with a χ2 minimiza-
tion and their errors are not affected by the presence of
redundant data. Let y1 . . . yN be a set of experimental
measurements among which yk . . . yN are measurements
of the same variable. Let y = f(x,a) be the functional
dependence to be tested where a is a set of parameters to
be determined by means of a χ2 minimization:

χ2 =
N∑

i=1

(yi − f(xi,a))2

σ2
i

. (28)

The (28) can be written also:

χ2 =
k−1∑
i=1

(yi − f(xi,a))2

σ2
i

+
N∑

i=k

(yi − ȳ + ȳ − f(xk,a))2

σ2
i

, (29)

where ȳ is the weighted average of yk . . . yN ; all these val-
ues correspond to the same abscissa xk. Hence:

χ2 =
k−1∑
i=1

(yi − f(xi,a))2

σ2
i

+
N∑

i=k

(yi − ȳ)2

σ2
i

+
N∑

i=k

(ȳ − f(xk,a))2

σ2
i

(30)

+2
N∑

i=k

(yi − ȳ)(ȳ − f(xk,a))
σ2

i

.

The second term in the above equation is simply the χ2 of
the weighted average while the third term can be written
(ȳ− f(xk,a))2/σ2

ȳ, σȳ being the error on the weighted av-
erage ȳ; the fourth term vanishes by definition of weighted
average. Therefore:

χ2 = χ2
WA + χ2

fit , (31)
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where χ2
WA is the χ2 of the weighted average and:

χ2
fit =

k−1∑
i=1

(yi − f(xi,a))2

σ2
i

+
(ȳ − f(xk,a))2

σ2
ȳ

(32)

is just the correct χ2 to minimize, for the N−k+1 redun-
dant points have been replaced with their weighted aver-
age. Since χ2

WA does not depend on a, the minimization
of either χ2 or χ2

fit, the latter being the correct one, leads
to the same results. On the other hand, if n = dim(a) is
the number of fitted parameters, the normalized χ2

fit is:

χ2
fit =

χ2 − χ2
WA

k − n
(33)

instead of χ2/(N − n).
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25. J. Sollfrank, M. Gaździcki, U. Heinz, J. Rafelski: Z. Phys.
C 61 (1994) 659

26. J. Letessier, J. Rafelski, A. Tounsi: Paris preprint PAR-
LPTHE-97-25 (hep–ph 9710310), Phys. Lett. B (1997) in
press

27. F. Becattini: Proc. of International Symposium
’Strangeness in Quark Matter 1997’, Santorini (Greece),
April 14 – 18 1997, to be published in J. Phys. G, Firenze
preprint DFF 284/07/1997 (hep–ph 9708248)
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